{"id":"c36f83b0-26ae-42aa-a061-e3185eb15d69","name":"Nqueens Permutations - 2d As 1d - Queen Chooses","description":"1. You are given a number n, representing the size of a n * n chess board.\r\n2. You are required to calculate and print the permutations in which n queens (distinct) can be \r\n placed on the n * n chess-board. \r\n3. No queen shall be able to kill another.\r\n\r\nNote -> Use the code snippet and follow the algorithm discussed in question video. The judge can't \r\n force you but the intention is to teach a concept. Play in spirit of the question.\r\n","inputFormat":"A number n","outputFormat":"Check the sample output and question video","constraints":"1 <= n <= 5","sampleCode":{"cpp":{"code":""},"java":{"code":"import java.io.*;\r\nimport java.util.*;\r\n\r\npublic class Main {\r\n\r\n public static boolean IsQueenSafe(int[][] chess, int row, int col) {\r\n // write your code here\r\n }\r\n\r\n public static void nqueens(int qpsf, int tq, int[][] chess) {\r\n // write your code here\r\n }\r\n\r\n public static void main(String[] args) throws Exception {\r\n BufferedReader br = new BufferedReader(new InputStreamReader(System.in));\r\n int n = Integer.parseInt(br.readLine());\r\n int[][] chess = new int[n][n];\r\n\r\n nqueens(0, n, chess);\r\n }\r\n}"},"python":{"code":""}},"points":10,"difficulty":"easy","sampleInput":"4","sampleOutput":"-\tq1\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq2\t-\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq1\t-\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n","questionVideo":"https://www.youtube.com/embed/BLy1wjhwHU8?end=252","hints":[],"associated":[],"solutionSeen":false,"tags":[],"meta":{"path":[{"id":0,"name":"home"},{"id":"0c54b191-7b99-4f2c-acb3-e7f2ec748b2a","name":"Data Structures and Algorithms","slug":"data-structures-and-algorithms","type":0},{"id":"082986ae-d618-4a59-9ab3-6d79056679a4","name":"Recursion and Backtracking For Intermediate","slug":"recursion-and-backtracking-for-intermediate-330","type":0},{"id":"d738ac73-8fce-42d1-9d26-7980c4bd2047","name":"Nqueens Permutations - 2d As 1d - Queen Chooses","slug":"nqueens-permutations-2d-as-1d-queen-chooses","type":1}],"next":{"id":"d7a17f8b-abd0-4dfc-9c46-06edff05e6d3","name":"Nqueens Permutations - 2d As 1d - Queen Chooses MCQ","type":0,"slug":"nqueens-permutations-2d-as-1d-queen-chooses-mcq"},"prev":{"id":"8b10c00d-51a5-4439-882a-8e46ea4d730b","name":"Nknights Combinations - 2d As 1d - Knight Chooses MCQ","type":0,"slug":"nknights-combinations-2d-as-1d-knight-chooses-mcq"}}}

Nqueens Permutations - 2d As 1d - Queen Chooses

1. You are given a number n, representing the size of a n * n chess board. 2. You are required to calculate and print the permutations in which n queens (distinct) can be placed on the n * n chess-board. 3. No queen shall be able to kill another. Note -> Use the code snippet and follow the algorithm discussed in question video. The judge can't force you but the intention is to teach a concept. Play in spirit of the question.

{"id":"c36f83b0-26ae-42aa-a061-e3185eb15d69","name":"Nqueens Permutations - 2d As 1d - Queen Chooses","description":"1. You are given a number n, representing the size of a n * n chess board.\r\n2. You are required to calculate and print the permutations in which n queens (distinct) can be \r\n placed on the n * n chess-board. \r\n3. No queen shall be able to kill another.\r\n\r\nNote -> Use the code snippet and follow the algorithm discussed in question video. The judge can't \r\n force you but the intention is to teach a concept. Play in spirit of the question.\r\n","inputFormat":"A number n","outputFormat":"Check the sample output and question video","constraints":"1 <= n <= 5","sampleCode":{"cpp":{"code":""},"java":{"code":"import java.io.*;\r\nimport java.util.*;\r\n\r\npublic class Main {\r\n\r\n public static boolean IsQueenSafe(int[][] chess, int row, int col) {\r\n // write your code here\r\n }\r\n\r\n public static void nqueens(int qpsf, int tq, int[][] chess) {\r\n // write your code here\r\n }\r\n\r\n public static void main(String[] args) throws Exception {\r\n BufferedReader br = new BufferedReader(new InputStreamReader(System.in));\r\n int n = Integer.parseInt(br.readLine());\r\n int[][] chess = new int[n][n];\r\n\r\n nqueens(0, n, chess);\r\n }\r\n}"},"python":{"code":""}},"points":10,"difficulty":"easy","sampleInput":"4","sampleOutput":"-\tq1\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq1\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq1\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq1\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq2\t-\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq1\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq4\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq3\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq1\t-\t-\t-\t\r\n-\t-\tq2\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq4\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq3\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq1\t\r\n-\tq2\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq2\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq4\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq2\t-\t-\t-\t\r\n-\t-\t-\tq3\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq3\t-\t\r\nq4\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq1\t-\t-\t\r\n\r\n-\t-\tq4\t-\t\r\nq3\t-\t-\t-\t\r\n-\t-\t-\tq2\t\r\n-\tq1\t-\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq2\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq4\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq2\t\r\nq3\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq3\t-\t-\t\r\n-\t-\t-\tq4\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n-\tq4\t-\t-\t\r\n-\t-\t-\tq3\t\r\nq2\t-\t-\t-\t\r\n-\t-\tq1\t-\t\r\n\r\n","questionVideo":"https://www.youtube.com/embed/BLy1wjhwHU8?end=252","hints":[],"associated":[],"solutionSeen":false,"tags":[],"meta":{"path":[{"id":0,"name":"home"},{"id":"0c54b191-7b99-4f2c-acb3-e7f2ec748b2a","name":"Data Structures and Algorithms","slug":"data-structures-and-algorithms","type":0},{"id":"082986ae-d618-4a59-9ab3-6d79056679a4","name":"Recursion and Backtracking For Intermediate","slug":"recursion-and-backtracking-for-intermediate-330","type":0},{"id":"d738ac73-8fce-42d1-9d26-7980c4bd2047","name":"Nqueens Permutations - 2d As 1d - Queen Chooses","slug":"nqueens-permutations-2d-as-1d-queen-chooses","type":1}],"next":{"id":"d7a17f8b-abd0-4dfc-9c46-06edff05e6d3","name":"Nqueens Permutations - 2d As 1d - Queen Chooses MCQ","type":0,"slug":"nqueens-permutations-2d-as-1d-queen-chooses-mcq"},"prev":{"id":"8b10c00d-51a5-4439-882a-8e46ea4d730b","name":"Nknights Combinations - 2d As 1d - Knight Chooses MCQ","type":0,"slug":"nknights-combinations-2d-as-1d-knight-chooses-mcq"}}}
plane

Editor


Loading...

Nqueens Permutations - 2d As 1d - Queen Chooses

easy

1. You are given a number n, representing the size of a n * n chess board. 2. You are required to calculate and print the permutations in which n queens (distinct) can be placed on the n * n chess-board. 3. No queen shall be able to kill another. Note -> Use the code snippet and follow the algorithm discussed in question video. The judge can't force you but the intention is to teach a concept. Play in spirit of the question.

Constraints

1 <= n <= 5

Format

Input

A number n

Output

Check the sample output and question video

Example

Sample Input

4

Sample Output

- q1 - - - - - q2 q3 - - - - - q4 - - q1 - - - - - q2 q4 - - - - - q3 - - q1 - - - - - q3 q2 - - - - - q4 - - q1 - - - - - q4 q2 - - - - - q3 - - q1 - - - - - q3 q4 - - - - - q2 - - q1 - - - - - q4 q3 - - - - - q2 - - - q1 - q2 - - - - - - q3 - q4 - - - - q1 - q2 - - - - - - q4 - q3 - - - - q1 - q3 - - - - - - q2 - q4 - - - - q1 - q4 - - - - - - q2 - q3 - - - - q1 - q3 - - - - - - q4 - q2 - - - - q1 - q4 - - - - - - q3 - q2 - - - - q2 - q1 - - - - - - q3 - q4 - - - - q2 - q1 - - - - - - q4 - q3 - - - - q3 - q1 - - - - - - q2 - q4 - - - - q4 - q1 - - - - - - q2 - q3 - - - - q3 - q1 - - - - - - q4 - q2 - - - - q4 - q1 - - - - - - q3 - q2 - - - q2 - - - - - q1 q3 - - - - - q4 - - q2 - - - - - q1 q4 - - - - - q3 - - q3 - - - - - q1 q2 - - - - - q4 - - q4 - - - - - q1 q2 - - - - - q3 - - q3 - - - - - q1 q4 - - - - - q2 - - q4 - - - - - q1 q3 - - - - - q2 - - q2 - - - - - q3 q1 - - - - - q4 - - q2 - - - - - q4 q1 - - - - - q3 - - q3 - - - - - q2 q1 - - - - - q4 - - q4 - - - - - q2 q1 - - - - - q3 - - q3 - - - - - q4 q1 - - - - - q2 - - q4 - - - - - q3 q1 - - - - - q2 - - - q2 - q3 - - - - - - q1 - q4 - - - - q2 - q4 - - - - - - q1 - q3 - - - - q3 - q2 - - - - - - q1 - q4 - - - - q4 - q2 - - - - - - q1 - q3 - - - - q3 - q4 - - - - - - q1 - q2 - - - - q4 - q3 - - - - - - q1 - q2 - - - - q2 - q3 - - - - - - q4 - q1 - - - - q2 - q4 - - - - - - q3 - q1 - - - - q3 - q2 - - - - - - q4 - q1 - - - - q4 - q2 - - - - - - q3 - q1 - - - - q3 - q4 - - - - - - q2 - q1 - - - - q4 - q3 - - - - - - q2 - q1 - - - q2 - - - - - q3 q4 - - - - - q1 - - q2 - - - - - q4 q3 - - - - - q1 - - q3 - - - - - q2 q4 - - - - - q1 - - q4 - - - - - q2 q3 - - - - - q1 - - q3 - - - - - q4 q2 - - - - - q1 - - q4 - - - - - q3 q2 - - - - - q1 -

Question Video

Discussions

Show Discussion

Related Resources

related resources

Turning Off Zen Mode